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Although visual working memory (VWM) has been studied extensively, it is unknown how people form
confidence judgments about their memories. Peirce (1878) speculated that Fechner’s law—which states
that sensation is proportional to the logarithm of stimulus intensity—might apply to confidence reports.
Based on this idea, we hypothesize that humans map the precision of their VWM contents to a confidence
rating through Fechner’s law. We incorporate this hypothesis into the best available model of VWM
encoding and fit it to data from a delayed-estimation experiment. The model provides an excellent
account of human confidence rating distributions as well as the relation between performance and
confidence. Moreover, the best-fitting mapping in a model with a highly flexible mapping closely
resembles the logarithmic mapping, suggesting that no alternative mapping exists that accounts better for
the data than Fechner’s law. We propose a neural implementation of the model and find that this model
also fits the behavioral data well. Furthermore, we find that jointly fitting memory errors and confidence
ratings boosts the power to distinguish previously proposed VWM encoding models by a factor of 5.99
compared to fitting only memory errors. Finally, we show that Fechner’s law also accounts for
metacognitive judgments in a word recognition memory task, which is a first indication that it may be
a general law in metacognition. Our work presents the first model to jointly account for errors and
confidence ratings in VWM and could lay the groundwork for understanding the computational mech-
anisms of metacognition.
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The contents of visual working memory (VWM) have been subject
of much recent investigation, with a focus on explaining storage
limitations (Luck & Vogel, 2013; Ma, Husain, & Bays, 2014). A
range of competing models have been proposed. For example, some
postulate that VWM resource consists of discrete quanta (W. Zhang &
Luck, 2008), while others claim it to be continuous (Bays & Husain,
2008; Palmer, 1990; Wilken & Ma, 2004). What all models have in
common, however, is that they conceptualize working memories as
point estimates: The memory of a feature is represented by a single
value. This view is inconsistent with the recently documented corre-
lation between VWM confidence ratings and VWM performance

(Bona, Cattaneo, Vecchi, Soto, & Silvanto, 2013; Bona & Silvanto,
2014; Rademaker, Tredway, & Tong, 2012): Larger memory errors
tend to be accompanied by lower confidence ratings (see Figure 1).
This correlation—which is sometimes called metacognitive accuracy
(Fleming & Dolan, 2012)—indicates that VWM contents are richer
than assumed by current models: Besides the memories themselves,
VWM also contains representations of the precision of the memories.
As of yet, no quantitative account exists for metacognition in any
form of working memory. Here, we develop and test a generalizable
model that jointly accounts for people’s VWM errors, their confi-
dence ratings, and the relation between them.

Generally stated, any model of confidence takes the form confi-
dence � f(x), where x is the mental variable from which confidence
ratings are derived and f is a function that maps this variable to a
confidence rating. Since VWM confidence correlates with VWM
precision (Bona et al., 2013; Bona & Silvanto, 2014; Rademaker et
al., 2012), we postulate that precision is the variable from which
confidence ratings are derived. For the mapping, f, we draw inspira-
tion from Charles Peirce’s suggestion that “the feeling of belief” (i.e.,
confidence Peirce, 1986, p. 294) is related to “the expression of the
state of facts which produces the belief” through Fechner’s law, that
is, through a logarithmic mapping (Fechner, 1860; Peirce, 1878).
Finally, because of the abundance of noise in the nervous system
(Faisal, Selen, & Wolpert, 2008), and following previous literature on
metacognition (De Martino, Fleming, Garrett, & Dolan, 2013; Harlow
& Donaldson, 2013; Jang, Wallsten, & Huber, 2012; Maniscalco &
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Lau, 2012; Mueller & Weidemann, 2008), we postulate that confi-
dence ratings may be corrupted by “metacognitive” noise.

Combining these three postulates, we hypothesize that VWM
confidence is derived from VWM precision through a logarithmic
mapping that is corrupted by noise. Below, we turn this hypothesis
into a process model and combine it with the best available VWM
encoding model. We fit the combined model to data from a
delayed-estimation experiment, critically evaluate several of its
assumptions, propose a neural implementation, consider alterna-
tive encoding models, and provide a preliminary assessment of the
generality of Fechner’s law in metacognition.

Model Construction

VWM Noise and Precision

We develop our model in the context of the delayed-estimation
experiment performed by Rademaker et al. (2012). In their exper-
iment, human observers memorized a set of orientation stimuli on
each trial. After a brief delay, they provided a near-continuous
estimate of a randomly chosen target stimulus, together with a
confidence report (Figure 1A). Since the stimulus domain is cir-

cular, we make the common assumption that memory noise fol-
lows a Von Mises distribution (Bays & Husain, 2008; Wilken &
Ma, 2004; W. Zhang & Luck, 2008), which can be interpreted as
the circular equivalent of the normal distribution. Denoting the
stimulus value by s and the stimulus memory by x, the memory
distribution is formally written as

p(x | s, �) � 1
2�I0(�)e�cos(x�s)

where � is the concentration parameter and I0 is the modified
Bessel function of the first kind of order 0. The width of the
noise distribution is controlled by parameter �: the larger its
value, the narrower the distribution (� � 0 is the uniform
distribution on [��, �] and in the limit of large �, the Von
Mises distribution approximates a Gaussian distribution with
�2 � 1/�).

As in previous work (Keshvari, van den Berg, & Ma, 2012;
van den Berg, Awh, & Ma, 2014; van den Berg, Shin, Chou,
George, & Ma, 2012), we define memory precision as Fisher
information, J, which provides a lower bound on the variance of
any unbiased estimator of the stimulus and is a common tool in
the study of theoretical limits on stimulus coding and discrim-

Figure 1. Previously reported evidence for metacognitive knowledge in visual working memory. (A) Sche-
matic illustration of the delayed-estimation experiment performed by Rademaker, Tredway, and Tong (2012).
On each trial, subjects memorized 3 or 6 orientation stimuli. After a brief delay, one of the stimulus locations
was highlighted and the subject was asked to first report her confidence about the memory at that location and
then provided an estimate of the stimulus. (B) Raw data: histograms of estimation errors, split by confidence
rating (columns) and set size (rows). (C) First summary statistic: histograms of reported confidence rating for
set sizes 3 (top) and 6 (bottom). Each bar corresponds to the summed trial count of one of the histograms in panel
B. (D) Second summary statistic: circular variance of the error distribution as a function of confidence rating for
set sizes 3 (top) and 6 (bottom). Each point corresponds to the width of one of the histograms in panel B. The
data shown in panels B-D were published in Rademaker, Tredway, and Tong (2012). All data points represent
averages across subjects, and error bars represent 1 SEM.
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ination precision (Abbott & Dayan, 1999; Cover & Thomas,
2005; Ly, Marsman, Verhagen, Grasman, & Wagenmakers,
2015; Paradiso, 1988). It is monotonically related to � through
the relation

J(�) � �
I1(�)
I0(�)

(Keshvari et al., 2012), where I1 is the modified Bessel function
of the first kind of order 1. Hence, a larger memory precision J
means a narrower memory noise distribution and a smaller
expected memory error (Figure S1 in the online supplemental
material). Of course, Fisher information is not the only possible
definition of precision. Any quantity that is monotonically
related to the expected memory error could be a suitable can-
didate, such as the concentration parameter of the memory noise
distribution, �, itself. While Fisher information will serve as our
main definition of memory precision, we later evaluate our
proposed model under two alternative definitions (see the
Model Evaluation section).

Distribution of VWM Errors for a Given Level
of Precision

We define estimation error, ε, as the circular distance between
stimulus s and memory x. Under the above defined noise distri-
bution, the distribution of estimation errors for a given precision J
is formally written as

p(ε | J) � 1
2�I0(�(J))e�(J)cos ε, (1)

where �(J) maps Fisher information to a concentration parameter.
This mapping is not analytic, but can easily be computed by
numerical inversion of mapping J(�) that was presented above
(Figure S1). Although there are many different models of VWM
encoding—such as “slot” and “resource” models—there is nothing
controversial about Equation 1: It simply states that for a given
level of precision, working memory errors for circular features
follow a Von Mises distribution. What is not generally agreed
upon is the distribution of precision with which memories are
encoded. This distribution is formalized in an “encoding” model,
which we will describe later.

Fechner Model of VWM Confidence

Following Peirce’s proposal that confidence obeys Fechner’s
law, we postulate that VWM confidence, which we denote by �, is
derived from VWM precision, J, through a logarithmic mapping.
Furthermore, we assume that confidence judgments are corrupted
by “metacognitive noise” (De Martino et al., 2013; Harlow &
Donaldson, 2013; Jang et al., 2012; Maniscalco & Lau, 2012;
Mueller & Weidemann, 2008). This leads to a process model of the
form

� � alog J � b � �, (2)

where parameters a and b establish the scaling and shifting that is
required to transform the observer’s internal sense of confidence to
the response range imposed by the experimenter—which is arbi-
trary and varies from experiment to experiment. These parameters
also control an observer’s mapping “strategy”: the larger the value

of a, the more sensitive the confidence ratings are to small changes
in precision and the more of them will be “0” (lowest) or “5”
(highest); the larger the value of b, the more the confidence rating
histogram shifts to the right. Parameter � is the metacognitive
noise term, which we assume to be normally distributed with
standard deviation �mc. Thus, when a memory is encoded with
precision J, the probability that it is accompanied by a confidence
of magnitude � takes the form

p(� | J) � 1

�2�	mc
2

e�
(� � (alog J � b))2

2	mc
2 . (3)

In Equations 2 and 3, confidence is as a continuous variable.
However, in many experiments, subjects report confidence on
an integer scale. To model data from such experiments, we
round � to the nearest value included in the integer scale. For
example, to model data from an experiment that measured
confidence as integer ratings between 0 and 5, all ratings
smaller than 0.5 are rounded to “0,” all ratings between 0.5 and
1.5 to “1,” and so forth.

How to evaluate this model of confidence? A common way to
test whether a subjective variable—such as perceived weight or
loudness— obeys Fechner’s law is to use the method of paired
comparison (Thurstone, 1927). This method consists of mea-
suring subjectively reported stimulus intensity differences for a
range of known, objective intensity differences. In our case, this
would amount to measuring confidence rating differences for a
range of known memory precision differences. This is difficult,
if not impossible, using behavioral measures alone, because
precision is an internal variable that is unknown to the exper-
imenter. However, we can instead evaluate our model of VWM
confidence indirectly, by coupling it with a model of VWM
errors and exploit the fact that the model predicts confidence
and error to be correlated, as explained below.

Joint Distribution of VWM Errors and
Confidence Ratings

Above, we separately specified a model for VWM errors, p(ε|J),
and one for VWM confidence, p(�|J). While we presented these
models largely independently of each other, their predictions are
coupled through a shared dependence on memory precision, J: Pre-
cision affects the memory error, because it determines the width of the
memory noise distribution (Equation 1 and Figure S1), and it affects
confidence, because of the mapping between precision and confi-
dence (Equation 2 and Figure 2A). Due to this coupling, we expect the
model to predict a correlation between estimation errors and confi-
dence ratings. Indeed, simulations show that on trials when precision
J is high, the estimation error ε tends to be small and confidence �
tends to be high (Figure 2B). Moreover, the model makes specific,
quantitative predictions for the relation between estimation error and
confidence rating, whose shape depends on properties of the assumed
mapping between VWM precision and VWM confidence (Figure
2C). The fact that error and confidence are correlated allows us to
evaluate the validity of our proposed model of VWM confidence by
fitting joint distributions of estimation errors and confidence ratings:
If our hypothesis is correct, then a model that uses Fechner’s law to
map precision to confidence, Equation 2, should (i) provide accurate
fits to subjects’ joint distributions of estimation errors and confidence
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ratings and (ii) provide better fits than models that use an alternative
kind of mapping.

Before we can test whether our model meets these two criteria, we
need to make the joint distribution of VWM error and confidence
mathematically precise. Since precision J is unknown to the experi-
menter, the predicted joint distribution of error ε and confidence � is
obtained by integrating over J. Assuming that ε and � are condition-
ally independent, we obtain

p(ε, �) � � p(ε | J) p(� | J) p(J)dJ.

The first two distributions in the integral, p(ε|J) and p(�|J), were
described above—the only part that remains to be specified is the
distribution of precision, p(J), which determines how many items
are encoded on a trial and with what precision. We refer to this
distribution as a “VWM encoding model.”

VWM Encoding Model

There is an ongoing debate about the question which of the
many available VWM encoding models best describes human

VWM limitations (Luck & Vogel, 2013; Ma et al., 2014). In a
recent factorial comparison of 32 of such models (van den Berg et
al., 2014), we found that the most successful model has the
following three properties: (a) precision of remembered items is
variable, following a gamma distribution; (b) mean precision de-
creases with set size through a power law; and (c) the number of
remembered items varies across trials, following a Poisson distri-
bution. We call this the “variable-precision model with a Poisson
number of remembered items.” It has four free parameters: average
memory precision at set size 1, denoted J�1; the shape parameter of
the gamma distribution, denoted 	, which controls the amount of
variability; the power, 
, of the power-law function that controls
the relation between memory precision and set size, J��N� �

J�1N

; and the mean of the Poisson distribution, Kmean, which

controls the variability in the number of remembered items. Math-
ematical details about this model can be found in the online
supplemental material and our earlier work (van den Berg et al.,
2014). We first evaluate our proposed Fechner model of VWM
confidence in combination with this particular encoding model.
Thereafter, we also consider alternative encoding models.

Figure 2. A Fechnerian model of working memory confidence. (A) Illustration of how our proposed model
jointly produces a near-continuous estimation error and a discrete confidence rating in a delayed-estimation
experiment. The example on the left shows a trial in which a memory is encoded with medium precision (J �
2) and the one on the right a trial in which it is encoded with high precision (J � 8). Precision, J, determines
the width of the noise distribution and is also the variable that is mapped—through Fechner’s law—to a
confidence rating. Hence, J affects both the subject’s estimation error and her confidence. (B) Simulation results
from 1,000 trials, with J drawn on each trial from a gamma distribution with a mean of 1.5 and a scale parameter
of 10. Each dot shows the estimation error (y axis) and confidence (x axis) of one trial. Trial-to-trial variability
in J induces a negative correlation between estimation error and confidence: When precision is low (red; open
circles), estimation errors tend to be larger and confidence tends to be lower than when precision is medium
(green; plusses) or high (blue; closed circles). (C) Circular variance of the error as a function of confidence rating
in the same simulation, for two different values of �mc. The strength of the negative correlation depends on the
amount of metacognitive noise. See the online article for the color version of this figure.
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Model Evaluation

Data

We evaluate the model by fitting it to data made available by
Rademaker, Tredway, and Tong (2012). They performed a
delayed-estimation experiment in which subjects reported on
each trial the orientation of a randomly chosen stimulus out of
a set of memorized stimuli (Figure 1A). Subjects also rated their
confidence as an integer between 0 (“no memory at all”) and 5
(“the best possible memory”). The raw data thus consist of a
paired estimation error and confidence rating for each trial. Six
subjects each performed 796 trials at set sizes 3 and 6, which
were randomly intermixed. Confidence ratings varied greatly
even within a given set size (Figure 1C). Moreover, for a given
set size, circular variance of the estimation error correlated
negatively with confidence rating (Figure 1D): Subjects had
wider error histograms when they reported lower confidence,
which indicates that they possessed metacognitive knowledge
of their VWM contents.

Model Fits

We use a genetic algorithm (see the online supplemental mate-
rial) to estimate the maximum-likelihood parameter values, sepa-
rately for each subject (MATLAB code can be found at www
.github.com/NYUMaLab/FechnersLawInMetacognition). We find
that the model provides an excellent account of the raw data, both

at the group level (Figure 3A) and the level of individual subjects
(Figures S2–S7). It also accounts well for the two statistics that
summarize the raw data: the marginal confidence rating histo-
grams (Figure 3B) and the circular variance of the error as a
function of confidence (Figure 3C).

Under the best-fitting parameter values (see Table 1), the aver-
age confidence ratings produced by the model are close to the
empirical averages: 3.22 � 0.22 versus 3.26 � 0.19 at set size 3
and 1.86 � 0.27 versus 1.87 � 0.27 at set size 6 (here and
elsewhere, X � Y refers to the mean and standard error of the
mean across subjects). At both set sizes, a Bayesian paired- sam-
ples t test (JASP Team, 2016) favors the null hypothesis that the
mean of the empirical population is identical to the average rating
produced by the model, with Bayes factors of 1.89 and 2.22,
respectively. At the level of individuals, Bayesian one-sample t
tests support the null hypothesis in 11 out of 12 cases, with Bayes
factors ranging from 5.7 to 25.7. The only exception is the case of
set size 3 of Subject S2, where the alternative hypothesis is
supported—nevertheless, even for that case the deviation is small
(2.51 vs. 2.31).

Finally, metacognitive accuracy—defined as the correlation co-
efficient between the absolute estimation error and confidence
rating (Fleming & Dolan, 2012) —produced by the fitted model
is �0.453 � 0.018, which closely matches the empirical value
of �0.464 � 0.020. A Bayesian paired-samples t test favors the
null hypothesis that the population averages are identical, with a
Bayes factor of 1.81.

Figure 3. The Fechnerian model of working memory confidence allows for excellent fits to people’s joint
distributions of working memory errors and confidence ratings. (A) Model fits to the histogram of
estimation errors, split by confidence rating (columns) and set size (rows). (B) Model fits to the distribution
of confidence ratings, split by set size. (C) Model fits to the circular variance of the estimation error as a
function of confidence rating, split by set size. The presented data and model fits were averaged across
subjects. Error bars and shaded areas indicate 1 SEM. Fits to individual subjects can be found in online
supplemental Figures S1–S7.
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These results support the hypothesis that VWM confidence is a
noisy, logarithmic function of VWM precision (Equation 2). In the
remainder of this article, we critically evaluate our model, propose a
neural implementation, examine the model fits under alternative
VWM encoding models, and assess whether it generalizes to another
task.

Evaluation of Parameter Estimates

The model has seven free parameters, four of which are associated
to the VWM encoding model and three to the mapping between
VWM precision and VWM confidence. We next discuss the plausi-
bility of the estimated values of these parameters (see Table 1)
and—where possible—compare them with findings from earlier stud-
ies.

For three of the six subjects (S4–S6), the estimated average
number of remembered items on a trial, Kmean, is so high (�50)
that essentially all items are remembered on every trial. For these
subjects, the estimated value of Kmean has no sensible interpreta-
tion—experiments with larger set sizes would be required to
obtain reliable estimates. For the remaining subjects, the estimated
average number of remembered items is 6.5 � 1.9, which is
consistent with the earlier reported median of 6.4 (van den Berg et
al., 2014). Note that the estimate of Kmean is about a factor 2 larger
than the typical “3 � 1” estimate from slot-based models. The
explanation for this difference is that the variable-precision model
treats some of the large estimation errors as low-precision esti-
mates, while standard slot-based models can only account for them
as random guesses.

The estimate of parameter J�1—which represents encoding preci-
sion at set size 1, expressed as Fisher information—is 26.7 � 6.2. This
corresponds to a circular standard deviation of 12.9° � 2.2°, which
seems plausible.1 The value is a bit higher than the 7.7° � 1.5° that
we found in one of our own delayed-estimation experiments with
orientation as the relevant feature (van den Berg et al., 2012). We
suspect that this is due to the relatively long memory delay period in
the study by Rademaker et al. (2012) (7 s between stimulus offset and
estimation response onset, vs. 1 s in our own study).

The estimated power of the power law that describes the relation
between mean encoding precision and set size is �1.76 � 0.18.
This means that mean precision is estimated to decrease with set
size, which is what we would expect. The value is lower than
the �1 that one would expect if the total amount of memory

resource were constant (Palmer, 1990). This is consistent with our
earlier findings (van den Berg et al., 2014) and may be explained
as an inefficiency in distributing memory resources over multiple
items.

The three parameters associated with the mapping between
VWM confidence and VWM precision are a, b, and �mc in
Equation 2. The estimated value of �mc is 0.61 � 0.14. To assess
the plausibility of the estimated values for the level of meta-
cognitive noise, we compute through simulations how often it
causes a confidence response to change—for example, when
confidence on a particular trial is 3.2 before noise is added, then
a noise value of 0.4 would change the confidence response from
“3” to “4.” We find that the noise leaves the confidence rating
unchanged in 61.7% � 8.5% of the trials and causes changes of
magnitudes 1, 2, and 3 in 34.0% � 6.9%, 4.0% � 1.9%, and
0.24% � 0.17% of the trials, respectively. Hence, the estimated
level of metacognitive noise causes a change in the confidence
response on around 40% of the trials, but rarely of a magnitude
larger than 1.

The remaining two parameters, a and b, determine the mapping
between precision and confidence (visualized in Figure 4C). It is
difficult to define a psychologically plausible range for these
parameters, because their values depend on both the estimated
distribution of precision and the range of the confidence response
scale imposed by the experimenter, which is arbitrary.

Evaluation of the Assumption That the Mapping
Between Precision and Confidence Is Logarithmic

The excellent model fits support the hypothesis that VWM
confidence is derived from VWM confidence through Fechner’s
law. However, for a model to be convincing, it should not only fit
well, it should also fit better than alternative models. In particular,
it may be that there is an alternative, non-Fechnerian model that
fits the data equally well or better, which would weaken and
potentially falsify our model. We next try to find such an alterna-

1

The circular standard deviation is computed as ��2log
I1���1�
I0���1�

, where

��1 is derived from J�1 through the mapping described in the Model Con-
struction section.

Table 1
Maximum Likelihood Parameter Estimates of the Fechner Model of VWM Confidence Combined
With the Variable-Precision Encoding Model

Subject a b �mc J�1 
 	 Kmean

S1 .982 3.627 .515 19.9 �2.19 1.77 7.12
S2 1.255 2.487 .073 6.17 �1.39 0.40 3.08
S3 .788 2.624 .469 36.5 �1.84 1.63 9.42
S4 .408 3.146 1.043 30.9 �1.45 7.01 90.3
S5 .429 3.144 .707 17.5 �1.31 7.44 128.7
S6 .83 1.963 .870 49.0 �2.37 1.08 53.0
Mean � SEM 0.78 � .13 2.83 � .24 .61 � .14 26.7 � 6.2 �1.76 � .18 3.2 � 1.3 6.5 � 1.9a

Note. VWM � visual working memory.
a Subjects S4 –S6 are excluded from the mean, because their estimates of Kmean are unreliable (see the main
text).
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tive, better-fitting model in two different analyses. In the first, we
replace the logarithmic mapping in Equation 2 with a highly
flexible power-law mapping:

� � a�J� � 1
� � � b � �. (4)

In the limit of  � 0, this mapping reduces to our original
model, Equation 2, as can be verified by applying L’Hôpital’s
rule.2 However, when  is a free parameter, this model variant
allows for any possible power-law mapping between VWM pre-
cision and confidence (Figure 4A).3 If our hypothesis that VWM
confidence obeys Fechner’s logarithmic law is correct, then we

2 Application of L’Hôpital’s rule means to take the derivatives of the
numerator and denominator with respect to  and then evaluate the result
at  � 0. The derivatives are JlogJ and 1, respectively. Hence, we find
lim
�¡0

J��1
� � lim

�¡0

J� log J
1 � logJ.

3 At first sight, it may seem that Equation 4 allows for only a particular
subset of power-law functions, because the exponent  also appears in the
scaling factor and in the additive term, which is more clearly seen when
rewriting it as � � a

�J� � 1
� � b. However, since a and b are also free

parameters, the exponent, scaling factor, and additive term can all be varied
independently of each other. Therefore, Equation 4 captures every possible
power-law mapping between memory precision and confidence.

Figure 4. The best-fitting mapping between working memory precision and confidence is near-perfectly logarithmic. (A)
Examples of possible mappings between visual working memory precision and confidence in the power-law model. The
logarithmic (Fechnerian) mapping is a special case of the power-law mapping, namely the case of  � 0. (B) Subject-
averaged goodness of fit of the power-law model as a function of . Goodness of fit is expressed as the maximum log
likelihood under a given value of , relative to the maximum log likelihood of the original model ( � 0). The goodness
of fit is maximal when  is close to 0. Error bars represent 1 SEM. (C) Maximum-likelihood estimates of the mapping in
the Fechner model (black [solid] lines) compared with the maximum likelihood estimates of the mapping in the model with
freely fitted criteria (closed circles). For visualization, the x-axis is logarithmically scaled, such that logarithmic mappings
appear as linear. The dashed line shows the best linear fit to the flexible criteria. For five subjects, the best-fitting mapping
in the flexible model is nearly identical to the logarithmic mapping in the Fechner model. For Subject S2, the best-fitting
mapping is slightly different in the flexible model, but still close to logarithmic. See the online article for the color version
of this figure.
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should find that the best-fitting value of  is close to 0. A
systematic deviation from 0, on the other hand, would falsify our
hypothesis and instead constitute support for Stevens (1957) power
law.

We estimate the best-fitting value of  in two different ways.
First, we fit the power-law model separately to each subject’s data
set in the same way as we fitted the original model, but now with
 as an additional free parameter. We find that the average
maximum-likelihood estimate of  is �0.10 � 0.13 and that a
Bayesian t test favors the hypothesis that the population mean is
equal to 0 over the hypothesis that it is not (Bayes factor: 2.08). In
a second analysis, we fix  to the same value for all subjects and
then refit their data. We repeat this 16 times, with  ranging
from �0.75 to 0.75 in steps of 0.10. We find that the goodness of
fit is maximal when  is close to 0 (Figure 4B). Both results
indicate that the best-fitting mapping in this family of power-law
functions closely resembles a logarithmic mapping.

In the second analysis, we make the mapping even more flexi-
ble: Instead of imposing a functional form, we fit the five criteria
that divide the VWM precision domain into six confidence bins as
free parameters, which allows for any monotonic mapping be-
tween precision and confidence. For five of the subjects, the
best-fitting mapping in this model is nearly identical to the best-
fitting mapping in the logarithmic model (Figure 4C; compare dots
with solid lines). More importantly, however, for all six subjects,
the mapping corresponding to the best-fitting criteria is close to
logarithmic (Figure 4C; compare red [solid] dots with dashed
lines). This indicates that there exists no monotonic mapping
between VWM precision and VWM confidence that captures these
data substantially better than the logarithmic one.

Evaluation of the Assumption That Confidence
Ratings Are Corrupted by Additive
Metacognitive Noise

We next perform two analyses to evaluate the assumption that
confidence judgments are corrupted by “metacognitive noise.”
First, we test a variant of the model without metacognitive noise,
by setting �mc to 0. To compare the fit of this variant with that of
the original model, we compute the Akaike Information Criterion
(AIC), which is a measure of goodness of fit that takes into account
differences in number of parameters between the models (Akaike,
1974). The AIC difference is 59 � 25 in favor of the original
model, which means that there is a clear benefit to having this
parameter in the model.

Second, we test whether multiplicative noise might have been a
better assumption than additive noise. To this end, we fit a model
variant in which we replace Equation 2 with � � �alogJ � b�·�,
where � is a normal random variable with a mean of 1 and a
standard deviation �mc. Since this model has the same number of
parameters as the original one, we can compare their goodness of
fit using the maximum log-likelihood values. The model with
additive noise outperforms the one with multiplicative noise, but
the difference in maximum log-likelihoods is small (4.2 � 2.9).
Moreover, the results are mixed at the level of individuals: Addi-
tive noise fits better than multiplicative noise for four subjects,
while for the other two it is the other way around. Therefore, we
conclude that although inclusion of metacognitive noise is impor-

tant to account for the data, we cannot draw strong conclusions
about the exact form of this noise.

Evaluation of the Assumption That the Mapping
Between VWM Precision and VWM Confidence Is
Independent of Set Size

So far, we have assumed that the mapping between VWM
precision and VWM confidence is independent of set size. We next
evaluate this assumption by fitting a model variant in which
parameters a and b—which control the mapping—are fitted sep-
arately for set sizes 3 and 6. The best-fitting mappings are very
similar at both set sizes (see Figure 5). At the group level, the
model with a set-size-dependent mapping marginally outperforms
the original model, with an AIC difference of 4.2 � 3.7. At the
level of individual subjects, the model variant is preferred for two
of the six subjects (S2 and S6). Hence, for two subjects there is
some evidence that the mapping between VWM precision and
VWM confidence differs across set sizes, but the differences seem
small.

Evaluation of the Model Using an Alternative
Definition of VWM Precision

Although we had good reasons to define VWM precision as
Fisher information (see above), other choices would have been
possible: Any quantity that is inversely related to the expected
memory error is, in principle, a sensible basis for confidence
ratings. One such quantity is the concentration parameter of the
memory noise distribution, �. Since the relation between � and J

Figure 5. The best-fitting mappings between VWM precision and VWM
confidence are very similar at set sizes 3 and 6. For all subjects, except S2
and S6, model comparison based on Akaike Information Criterion favors
the model with a single mapping for both set sizes. However, even for S2
and S6 the best-fitting mappings at set sizes 3 and 6 are quite similar.
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is nonlinear for low precision values (Figure S1), and since most
of the confidence ratings in the lower bins originate from low-
precision trials (Figure 4C), we may expect the model predictions
to be different under these two definitions of precision. To exam-
ine how sensitive the goodness of fit of our model is to the chosen
definition of memory precision, we refit the data with a variant in
which we replace J in Equation 2 with �. We find that the
maximum log-likelihood differences between the original model
and this variant are negligible (2.8 � 2.9, in favor of the original
model), which suggests that both models account approximately
equally well for the data. Hence, the model’s ability to account for
metacognitive judgments through Fechner’s law generalizes to an
alternative definition of VWM precision.

Evaluation of the Model Using Probability Correct as
a Basis for Confidence

So far, we have assumed that confidence reflects memory pre-
cision. While this may be a sensible assumption in the context of
an estimation task, it does not readily generalize to tasks with
discrete decisions, such as a binary choice between two alterna-
tives. In such tasks, there is no straightforward notion of “preci-
sion” and confidence is instead typically assumed to reflect the
probability that the choice is correct (e.g., Kiani, Corthell, &
Shadlen, 2014; Kiani & Shadlen, 2009; Pouget, Drugowitsch, &
Kepecs, 2016; van den Berg et al., 2016). While probability correct
is perhaps a less intuitive basis for confidence in the context of the
VWM estimation task, it has the appealing property that it could
serve as a general (task independent) basis of confidence. In the
estimation task, a “correct” response, x, would be one that is
identical to the true stimulus value, s. Conditioned on memory
precision, J, we can quantify the probability of a correct response
as pcorrect � p(x � s | J) � e�/[2�I0(�)], where � is the concen-
tration parameter corresponding to J (see Model Construction
section). When we replace J in Equation 2 with pcorrect and refit the
model, we find that the maximum log-likelihood difference with
the original model is small (6.5 � 6.7, in favor of the original
model). We draw two conclusions from this finding: first, that
pcorrect may serve as a general basis for confidence, although it is
a somewhat unintuitive measure in the context of estimation tasks;
second, the model’s ability to account for metacognitive judgments
through Fechner’s law generalizes to an alternative basis for con-
fidence.

Neural Implementation

The model presented above provides an account of memory
confidence at the “algorithmic” level of David Marr’s (1982)
Tri-Level hypothesis, which addresses “the representation for the
input and output of a system, and the algorithm used for the
transformation.” A more complete theory should also account for
confidence at what Marr called the implementational level, which
addresses how the representation and algorithm be realized phys-
ically. Here, we offer such an account by extending an existing
encoding model with our proposed model of confidence.

A Neural Model for VWM Errors

A recent article introduced a neural model to account for VWM
estimation errors in a delayed-estimation task (Bays, 2014), based

on the framework of probabilistic population codes (Ma, Beck,
Latham, & Pouget, 2006; Ma & Jazayeri, 2014; Pouget, Dayan, &
Zemel, 2003). Memories are assumed to be encoded in the activity,
r, of a population of neurons with Von Mises tuning curves of the
form fi�s� � gexp��tccos��i � s��, where s is the stimulus value, �i

is the preferred orientation of the ith neuron, g is the neural gain,
and �tc controls the width of the tuning curve (Figure 6A). In
addition, the model assumes independent Poisson noise on the
spike counts. Hence, the number of spikes, ri, elicited by the ith
neuron in response to a stimulus s is a Poisson random variable
with mean fi(s). The maximum-likelihood estimate of the stimulus
value, extracted from the noisy population activity, is the equiva-
lent of the scalar memory x in the algorithmic-level model dis-
cussed above (Ma, 2010). Bays (2014) showed that the model
accounts well for human subjects’ error distributions in a delayed-
estimation experiment. We extend this model with our proposed
model of confidence and examine whether the combined model
accounts for joint distributions of VWM errors and confidence
ratings.

Neural Representation of Memory Precision

As in our algorithmic-level model, we hypothesize that VWM
confidence is derived through Fechner’s law from the subject’s
internal representation of VWM precision. Any neural measure of
VWM precision, which we denote Jneural, should have two prop-
erties: First, it should be a function of population activity r and,
second, it should be inversely related to the expected memory
error. We test our model under two such measures. The first one is
a neural approximation of measure J in the algorithmic-level
model. We derive this measure by first noting that population
activity r encodes a Von Mises likelihood function over stimulus
value s, with the following mean and concentration parameter (see
the online supplemental material for a derivation):

lh � atan2��i
ricos(�i), �

i
risin(�i)�

�lh � �tc���i
ricos(�i)�2

� ��i
risin(�i)�2,

where ri and �i are the spike count and preferred orientation,
respectively, of the ith neuron. Quantity �lh is similar to quantity
� in the algorithmic-level model. For consistency, we apply the
same Fisher Information transformation to �lh as we applied to �,
which gives us

Jneural,1 � �lh
I1(�lh)
I0(�lh)

.

The second measure of precision that we test was proposed by Bays
(Bays, 2016) and is simply the sum of the spiking activity in the
population encoding of the stimulus, Jneural,2 � �

i
ri. While these two

measures are highly correlated, it is easy to see that there is no
one-to-one mapping between them:4 The latter measure does not
depend on how activity is distributed across cells, while the former
clearly does. Therefore, the model predictions will be different under
both measures.

4 A simulation using maximum-likelihood parameter estimates gives a
Pearson r of 0.768 � 0.063.
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Model Fits

To obtain model predictions, we simulate a population with
M � 50 neurons with equally spaced preferred orientations that
cover the full circular domain. We relate the gain, g, to set size, N,
through a power-law function, g(N) � gtotal·N


, where gtotal and 

are free parameters. We thus give the model slightly more freedom
than the original version (Bays, 2014), which assumed an inverse
proportionality (i.e., 
 � �1).5 We fit both versions of the neural
model to each subject’s data set using maximum-likelihood esti-
mation and compared their fits to that of the algorithmic-level
model. While the results are mixed at the level of individuals,
overall the algorithmic-level model outperforms the neural models,
both in terms of fit to summary statistics (Figure 6B, top) and AIC
values (see Table 2).

The misfit in the summary statistics suggests that the neural
models perhaps have too little variability in memory precision,

which means that the fixed-gain assumption may be wrong:
While some variability in precision arises due to trial-to-trial
fluctuations in spike counts even if the population gain is fixed,
this might not be sufficient to explain the data. Indeed, there is
physiological evidence suggesting that neural gain in the cortex
is itself variable (Cohen & Kohn, 2011; Goris, Movshon, &
Simoncelli, 2014).

To examine whether releasing the fixed-gain assumption im-
proves the model fits, we next fit a variable-gain variant of each of
the two neural models. As in the fixed-gain model, gain is related
to set size through g(N) � gtotal·N


. However, we now treat g(N)
as a mean and draw the actual gain on each trial from a gamma

5 We introduced this flexibility to allow for a fair comparison with the
algorithmic-level model, which has a similar flexibility in the power-law
mapping between set size and mean precision.

Figure 6. A neural model extended with the Fechner model of confidence accounts well for the data when the
gain is assumed to be variable. (A) Schematic of how a stimulus is represented in a population coding model.
Each neuron in the population has a tuning curve, centered at the cell’s preferred stimulus (left). When a stimulus
is presented, each cell generates a stochastic number of spikes (center). The pattern of activity encodes a
(normalized) likelihood function over the stimulus (right). When the tuning curves are Von Mises functions, the
shape of the likelihood function is also a Von Mises function. (B) Top: fits of the fixed-gain neural model to the
distribution of confidence ratings (first two columns) and the circular variance of the error as a function of
confidence rating (last two columns). Bottom: fits of the variable-gain neural model. Error bars indicate standard
errors of the mean. Both results are from the model variant with the Jneural1measure of precision are shown;
results look similar for Jneural2. See the online article for the color version of this figure.
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distribution with a shape parameter 	, analogous to how we drew
J in the algorithmic-level model. These variable-gain variants
perform much better: While there is again large spread at the level
of individuals, at a group level the AIC differences with the
algorithmic-level model are inconclusive (see Table 2) and the
subject-averaged fits to the summary statistics look as good as that
of the algorithmic-level model (Figure 6B, bottom; cf. Figure
3B–3C).

We draw two conclusions from this analysis. First, our proposed
model of VWM confidence has a simple neural counterpart that
fits the data overall as well as the algorithmic-level model, al-
though there are large individual differences. Second, the variabil-
ity in spike counts induced by Poisson spiking may not fully
capture the variability in precision that is required to successfully
fit behavioral data; gain fluctuations might be needed on top of
that.

A Reevaluation of VWM Encoding Models

In the Model Evaluation section, we tested our proposed
model of confidence in combination with a particular model of
VWM encoding, namely the “variable-precision model with a
Poisson number of remembered items.” We next consider al-
ternative encoding models. Earlier proposed encoding models
differ from each other in essentially a single aspect, namely the
postulated distribution of VWM precision, p(J | �), where � is
a vector with model-specific parameters. For example, the
oldest slot model (Luck & Vogel, 1997; Pashler, 1988) postu-
lates that an item is encoded either with near-infinite precision
(J � �) or, when memory is full, not at all (J � 0); the oldest
“resource model” of working memory (Palmer, 1990; Wilken &
Ma, 2004) postulates that all items are stored in memory, with
equal precision; the variable-precision model (Fougnie,
Suchow, & Alvarez, 2012; van den Berg et al., 2012) postulates
that memory precision varies across items and follows a con-
tinuous distribution. In an earlier article (van den Berg et al.,
2014), we organized these models in a factorial space—which
also contained a large number of hybrid models—and ranked
them by using formal model comparison. We expect that inclu-
sion of confidence data will yield a stronger comparison, be-
cause models with little or no variability in precision should
predict little spread in confidence ratings and may therefore not

be able to account for the inverse relation between the averaged
VWM error and confidence (Figure 1D).

Factorial Model Design

We organize the encoding models in a factorial design with three
factors (see Table 3): number of encoded items, quantization of
memory precision, and presence of variability in precision. These
factors have three, three, and two levels, respectively, thus defining a
set of 18 models. This set of models is the same as in our previous
work (van den Berg et al., 2014), except for three small differences:
We do not consider models with nontarget responses, we dissociate
quantized precision from slots, and we do not consider response noise
(see Discussion section for motivation).

First factor: maximum number of remembered items. The
three levels in this factor differ in the assumption about the maximum
number of encoded items, K. One possibility is that subjects always
remember all items, K � N; we denote this level choice by A- (all).
Another possibility is that K is a fixed integer, in which case we label
the level F- (fixed). The third possibility is that K varies from trial to
trial (Dyrholm, Kyllingsbæk, Espeseth, & Bundesen, 2011; Sims,
Jacobs, & Knill, 2012) according to a Poisson distribution with rate
parameter Kmean. We denote this level by P- (Poisson).

Second factor: quantization of memory precision. This fac-
tor also has three levels: memory is a continuous quantity (-C-), a
quantized quantity that is evenly distributed across items (-Qe-), or a
quantized quantity that is unevenly distributed across items (-Qu-). In
-C- models, the mean precision with which an item is remembered,
denoted J�, is related to the number of remembered items in a power-
law fashion, J� � J�1N


, as in previous work (Keshvari et al., 2012;
Keshvari, van den Berg, & Ma, 2013; van den Berg et al., 2014,
2012). In the -Qe- and -Qu- models, memory resource comes in Q
discrete quanta, each providing a certain level of precision J�1. In the
-Qe- models, the quanta are distributed as evenly as possible. For
example, if four items are remembered and five quanta are available,
then three of them are remembered with precision J� � J�1 and one of
them with precision J� � 2J�1. In the -Qu- models, the quanta are
distributed randomly across items, in which case the number of
quanta with which an item is remembered follows a binomial distri-
bution. When an item is assigned zero quanta of resource (J� � 0), the
estimate distribution is uniform.

Third factor: variability in precision. This model factor has
two levels. In the equal-precision (-EP) models, the precision J
with which each item is remembered is equal to J�, as determined
by the second model factor. In the variable-precision (-VP) mod-
els, precision follows a gamma distribution with mean J� and scale
parameter 	.

This model space contains four prominent models from previous
literature: A-C-EP is similar to the sample-size model (Palmer,
1990); F-Qe-EP and F-Qu-EP are similar to the “slots-plus-
averaging” model (W. Zhang & Luck, 2008)6; F-C-EP is similar to
the “slots-plus-resources” model (W. Zhang & Luck, 2008); and
A-C-VP is the “variable-precision” model (van den Berg et al.,
2012). P-C-VP is the model that we used in the Model Evaluation

6 When W. Zhang and Luck (2008) introduced the slots-plus-averaging
model, they did not specify whether mnemonic chunks are distributed
evenly or randomly across items. Therefore, we refer to both F-Qu-EP and
F-Qe-EP as “slots-plus-averaging.”

Table 2
AIC Differences Between the Algorithmic-Level Model and the
Four Variants of the Neural Model

Subject

Fixed gain Variable gain

Jneural,1 Jneural,2 Jneural,1 Jneural,2

S1 �217 �457 13.6 20.7
S2 �548 �924 �286 �270
S3 17.8 �282 65.4 44.1
S4 �155 �295 �8.4 �16.1
S5 �136 �433 33.7 26.6
S6 95.1 �.24 111 103.3
Mean � SEM �157 � 91 �400 � 120 12 � 57 15 � 53

Note. A positive difference means that the neural model outperforms the
algorithmic-level model. AIC � Akaike Information Criterion.
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section. Details about the implementation of these models can be
found in the online supplemental material.

Factorial Model Comparison Results

We fit all 18 models to all six subject data sets. When ranked by
AIC score (Figure 7A, left), the P-C-VP model comes out as best,
followed by F-C-VP and A-C-VP. Hence, all encoding models in
which memory precision is continuous and variable fit well, which
is consistent with the main findings of our earlier meta-analysis of
VWM encoding models (van den Berg et al., 2014). Moreover, all
previously proposed models except A-C-VP perform poorly in the
model comparison. This is reflected in the fits to the summary
statistics (see Figure 8): Only A-C-VP accounts well for the
relation between confidence rating and performance. The problem
of the other three models seems to be that they predict too little
spread in encoding precision.

Is there a benefit to using confidence data when comparing
VWM encoding models? When comparing models, we want the
AIC differences between models to be large. Therefore, one way to
answer this question is by examining by how much the AIC
differences change when we exclude the confidence data and fit
the models to estimation errors only. We find that the AIC differ-
ences reduce greatly (Figure 7A, right), which indicates that in-
clusion of confidence data is indeed beneficial for model compar-
ison. To quantify this benefit, we compute the AIC difference
between any possible pair of models under both ways of fitting
(Figure 7B). We find that the AIC difference increases on average
by a factor of 5.99 when including confidence ratings (median;
mean � SEM: 128 � 4). Hence, one experiment that includes
confidence ratings is as informative about the VWM encoding
process as six experiments that only measure estimation errors.

Generalization to a Word Recognition Memory Task

The results so far support the hypothesis we started with: VWM
confidence is derived from VWM precision through Fechner’s law
and corrupted by metacognitive noise. We next address the gen-
erality of the hypothesis, by testing whether Fechner’s law can also
account for confidence ratings in a qualitatively different task,
namely the word recognition memory task by Mickes, Wixted, and
Wais (2007).

Experiment

The experiment by Mickes et al. (2007) consisted of two phases.
In the study phase, 14 subjects memorized a list of 150 words. In

the subsequent test phase, they were sequentially presented with
the same set of target words along with a set of 150 randomly
interspersed lure words that were not part of the study list. On each
trial, subjects first made a binary choice by indicating whether the
test word was on the study list and then rated their “memory
strength” on a 1–20 Likert scale (Likert, 1932), with 1 meaning
that the test word was definitely not on the list and 20 meaning that
it was definitely on the list. The data were made available to us by
Mickes et al.

Model

A model widely used for word recognition memory is the
unequal-variance signal-detection model (e.g., Ratcliff, Sheu, &
Gronlund, 1992; Wixted, 2007). In this model, each test word
produces a “memory strength” or “familiarity” value x, which is
assumed to be drawn from a Gaussian distribution with parameters
�lure and �lure for lures and �target and �target for targets (Figure
9A, top left).7 It is common to use the variable x as the decision
variable and impose confidence criteria such that the observer’s
confidence rating that the test word is a target increases monoton-
ically with x. This practice is somewhat questionable in view of the
unequal variances, which cause the distributions of x for targets
and lures to have two intersection points rather than one. For
example, if �target � �lure, both the lowest (most negative) and
highest values of x are more likely to be caused by a target than by
a lure. This means that the strength of the evidence that x carries
about the test word being a target does not monotonically increase
with x. To solve this inconsistency, we instead compute the opti-
mal decision variable based on x, which is the log posterior ratio
of “target” versus “lure” (Glanzer, Hilford, & Maloney, 2009):

d � logp(target | x)
p(lure | x) ,

which evaluates to a quadratic relationship between d and x (Fig-
ure 9A, top right):

d � log
	lure

	target
� 1

2�(x � target)
2

	target
2 �

(x � lure)
2

	lure
2 	.

The distributions of d for targets and lures are inherited from
the distributions of x for targets and lures, respectively; how-

7 Since only the difference in means and variances are relevant, we set
�lure�0 and �lure�1, while �target and �target are free parameters.

Table 3
Overview of Abbreviations Used to Label the VWM Model Factor Levels

Factor Level abbreviations Meaning

Number of encoded items A- All items are remembered.
F- A fixed number of items are remembered.
P- A variable number of items are remembered (Poisson distribution).

Quantization of precision -C- Memory precision is continuous.
-Qe- Memory precision is quantized and evenly distributed across items.
-Qu- Memory precision is quantized and unevenly distributed across items.

Variability of precision -EP There is no random variability in memory precision.
-VP There is random variability in memory precision.

Note. VWM � visual working memory.
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ever, the distributions of d are guaranteed to have only a single
intersection point, with stronger evidence for the test word
being a target lying above the separating criterion (Figure 9A,
bottom left). Thus, the observer reports “old” if d(x) � 0 and
“new” otherwise.

We next assume that the subject’s confidence in their choice
derives from the absolute value of d via Fechner’s law, in the same
way as in the working memory task, that is, � � alog��d�� �

b � �, where � is metacognitive noise with mean 0 and standard
deviation �mc. We turn � into a discrete rating by rounding it to the
nearest integer in the range 1–10, which in the absence of meta-
cognitive noise would be equivalent to imposing exponentially
spaced confidence criteria on |d| (Figure 9A, bottom right). Finally,
we interpret the 1–20 scale as two concatenated confidence scales,
in which the first half is confidence about choosing “lure” and the

second half is confidence about choosing “target.” Therefore, the
last step consists of mapping the confidence rating to the second
half of the scale if the observer believes that the test word is a
target (by adding 10) and to the first half otherwise (by subtracting
the confidence rating from 11).

Model Fit

We estimate the maximum-likelihood values of the five free
model parameters (�target, �target, a, b, and �mc) separately for each
subject (see Table 4).8 To obtain these estimates, we used a

8 Following the original analysis by Mickes et al. (2007), we excluded
S11 from our analysis.

Figure 7. Including confidence ratings in model comparison greatly improves the distinguishability of working
memory encoding models. (A) Subject-averaged Akaike Information Criterion (AIC) scores relative to the AIC
of the P-C-VP model, obtained from fitting the models with (left) and without (right) inclusion of confidence
judgment data. The models are sorted from worst to best. The citations to articles correspond to previously
proposed models (see the text). Error bars indicate 1 SEM. (B) Subject-averaged absolute AIC score for each pair
of models, obtained from fitting the models with (left) and without (right) inclusion of confidence judgment data.
The absolute AIC difference between any pair of models increases by a factor of 5.99 when including confidence
ratings in the model comparison (median factor across all 918 comparisons). See the online article for the color
version of this figure.
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combination of Bayesian optimization (Brochu, Cora, & De Frei-
tas, 2010) and pattern search (Audet & Dennis Jr., 2006). The
model accounts well for the data, both at the level of the group
(Figure 9B) and that of single subjects (Figure 9C). This result
suggests that our proposed logarithmic model of confidence is not
limited to working memory but may generalize to metacognition in
other domains.

An interesting secondary observation is that the model accounts
well for the rather large variability in rating “strategies” between
subjects: Some subjects primarily used the center of the scale (e.g.,
S9), while others primarily used the ratings at the edges (e.g., S1,
S6, S12), and yet others seemed to avoid both the center and the
very edges of the scale (e.g., S2, S7, S8). The variance in rating
patterns is partly captured by differences in scaling and offset
parameters (a and b) of the confidence mapping. However, we
believe that the variability is also in part caused by between-
subjects differences in the distribution of the decision variable
(Figure 9, bottom left).

Discussion

In this article, we introduced a quantitative process model for
visual working memory (VWM) metacognition that uses Fech-
ner’s law to map VWM precision to VWM confidence. The model
predicts the often-reported correlation between confidence and
performance and provides an excellent quantitative account of
joint distributions of estimation error and confidence in human
VWM. We critically evaluated several important assumptions of
our model, but none of these evaluations resulted in a falsification.
We proposed a neural counterpart of the model and showed that it
accounts for the data as well as the best algorithmic-level model,
but only when neural gain is allowed to vary across items. More-
over, we reevaluated previously proposed VWM encoding models
and found that inclusion of confidence data boosts the model
differences on average by a factor of 5.99. Finally, we showed that
a model based on Fechner’s law is also able to account for
confidence ratings in a word recognition memory experiment,
which provides preliminary evidence that Fechner’s law may be a
general law in metacognition.

Generality of Fechner’s Law

Fechner’s law has traditionally been used to describe how the
intensity of a physical stimulus maps to a subjective sensation. Our
results suggest that the same law may underlie sensations of
metacognitive information, such as the quality of a working mem-
ory or the posterior probability that a choice was correct. The
parallel applicability of Fechner’s law in basic perception meta-
cognition might be a coincidence, but could also reflect something
deeper about how the brain represents information. The traditional
Fechner law has been motivated normatively by arguing that
logarithmic coding of perceptual quantities has information-
theoretical advantages (Sun, Wang, Goyal, & Varshney, 2012).
Moreover, empirical findings—both behavioral and physiologi-
cal—have suggested that logarithmic coding is indeed widespread
in the brain (Gold & Shadlen, 2001, 2002; Juslin, Nilsson, Win-
man, & Lindskog, 2011; Maloney & Dal Martello, 2006; Phillips
& Edwards, 1966; H. Zhang & Maloney, 2012). In light of this, it
may seem less surprising—and perhaps even expected—that we
find evidence for Fechner’s law in metacognition. While we be-
lieve that our results are promising, the generality of a phenome-
non can obviously not be established in a single article—future
studies will have to test the law in a larger variety of tasks.

Metacognitive Noise

Removing the metacognitive noise parameter from our model
substantially worsened the fit for five out of six subjects. This
suggests that there are imperfections in the quality of a subject’s
knowledge about the precision of their own memory contents,
which is consistent with previous literature on metacognition (De
Martino et al., 2013; Harlow & Donaldson, 2013; Jang et al., 2012;
Maniscalco & Lau, 2012; Mueller & Weidemann, 2008). How-
ever, our results do not explain the cause of these imperfections:
The metacognitive noise parameter serves as an umbrella term for
all stochastic processes between the implicit representation of
memory uncertainty, possibly in early sensory cortex (Harrison &
Tong, 2009), and the brain’s confidence reporting system. We
chose to add the metacognitive noise to the confidence variable, �,

Figure 8. Most previously proposed working memory encoding models
account poorly for the relationship between confidence ratings and esti-
mation error. Left: Fits to the distribution of confidence ratings. Right: Fits
to the circular variance of the estimation error as a function of confidence
rating. Error bars indicate standard error of the mean. From top to bottom:
Palmer’s (1990) sample size model, W. Zhang and Luck’s (2008) slots-
plus-resources model, the best-fitting version of Zhang and Luck’s slots-
plus-averaging model, and van den Berg et al.’s (2012) variable-precision
model. The only old model that describes the data reasonably well is the
variable-precision model. See the online article for the color version of this
figure.
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which is obtained through a log transformation of memory preci-
sion, J. However, it could just as well be that metacognitive
noise is already present in the representation of memory preci-
sion. We cannot distinguish these two types of noise, because
the effect of adding normal noise after a log transformation is
mathematically equivalent to that of adding lognormal noise
before the transformation. A third—and perhaps the most like-
ly—possibility is that both variables are subject to noise. Future
work will need to break down the processes that contribute to
noise in metacognition.

One may wonder whether the presence of metacognitive noise
makes metacognition non-Bayesian or suboptimal. We believe that
these two questions have to be treated separately, because Bayes-
ian computation and optimality are distinct notions (Ma, 2010). A

Bayesian decision maker uses the posterior over the world state of
interest to make decisions. Since confidence ratings in our model
are derived from the posterior distribution, our model of confi-
dence is in this sense Bayesian, despite the presence of metacog-
nitive noise. An optimal decision maker maximizes performance
with respect to a reward function. In the tasks that we modeled,
confidence ratings did not affect the reward feedback that subjects
perceived. Therefore, there was no obvious reward function for the
confidence rating in these tasks and we cannot make any state-
ments about optimality of the confidence ratings. However, if the
observer had to make a postdecisional wager (Fleming & Dolan,
2010; Persaud, McLeod, & Cowey, 2007; Seth, 2008), and if that
wager were based on the subject’s noise-corrupted measure of
confidence, then this noise would make the observer suboptimal in

Figure 9. A variant of the unequal-variance signal-detection model extended with a logarithmic model of
confidence accounts for memory strength ratings in a word memory recognition experiment. (A) Illustration
of the model (parameter values: �target � 2.00, �target � 1.25, a � 2.00, b � 3.00, �mc � 1.00). Each test
word produces an internal representation, x, that is drawn from a Gaussian distribution whose parameters
depend on whether the word is a target or a lure (top left). The observer’s choice (“old” or “new”) is based
on the log posterior ratio of evidence, d, contained in x (top right). The distribution of d is different for
targets and lures. A confidence rating is obtained by applying Fechner’s law to the absolute value of d,
which is equivalent to placing exponentially spaced confidence criteria on d (bottom left). This results in
a predicted confidence distribution for targets and lures (bottom right; note that these distributions are
broader than in the bottom left panel, due to addition of metacognitive noise). (B) Subject-averaged rating
histograms from the experiment by Mickes et al. (2007). (C) Subject-level fits. For visualization, we
smoothed the subject-level histograms (which are quite noisy) using a moving averaging window with a
width of three bins. The same smoothing was applied to data and model fit.
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an absolute sense, but not necessarily in a relative sense (Ma,
2010).

The Nature of VWM Precision

Rademaker et al. (2012) speculated that only a model with
random variability in precision would probably be able to account
for their finding that confidence varied strongly even within a set
size. Here, we formally tested this speculation by performing a
factorial comparison of encoding models and found that their
speculation was correct: The only models that account well for
their data are variable-precision models; the best-fitting equal-
precision model is ranked seventh and is outperformed by the
best-fitting variable-precision model with an AIC difference of
46.4 � 18.8 (Figure 6A). Moreover, we found that successful
models had another property in common: None of these models
assumed that memory precision is a discretized quantity (the
best-fitting model with discretized precision is ranked fourth and is
outperformed by the best-fitting continuous-precision model with
an AIC difference of 30.6 � 23.7). Hence, our results show that
metacognition data pose a serious challenge to not only equal-
precision models, but also to the idea of quantized precision, which
is still actively advocated to date (Cappiello & Zhang, 2016; Luck
& Vogel, 2013).

Sources of Variability in Precision

We treated variability in precision as random, but many of its
components can probably be characterized more deterministi-
cally once the sources of variability in precision have been
identified. Such sources may include heteroskedasticity (Bae,
Olkkonen, Allred, Wilson, & Flombaum, 2014; Girshick,
Landy, & Simoncelli, 2011), configuration and context effects
(Brady & Alvarez, 2011; Brady & Tenenbaum, 2010), variabil-
ity in memory decay (Fougnie et al., 2012), attentional fluctu-
ations, attentional shifts, and competition between memories. It
has also been suggested that random variability in neural spike
counts—which exists even when neural gain is fixed—may be
a major source of the variability in precision observed at the
behavioral level. However, we found that a neural model with

fixed gain (Bays, 2014) does not account well for the correla-
tion between performance and confidence. This mismatch dis-
appeared when we introduced variability in the gain of the
neural population that encodes an item, which is consistent with
recent physiological findings that suggested the existence of
such variability (Cohen & Kohn, 2011; Goris et al., 2014).
However, since we did not explore the neural model as exten-
sively as the algorithmic-level model, we currently cannot
exclude the possibility that there are other possible modifica-
tions to the fixed-gain model (e.g., a different definition of
Jneural) that improve the fit without the need of a variable gain.

Limitations and Future Work

Our study has several limitations in addition to the ones
already discussed above. One is that we treated confidence as a
variable that can take arbitrarily large or small values. How-
ever, we cannot rule out that confidence has a floor or ceiling,
in other words, that Equation 2 only applies in a limited range
of J and saturates outside of it. One could test for such satura-
tion effects by using a continuous or near-continuous confi-
dence scale and examining the distribution of responses at the
ends of the scale. If saturation effects exist, the model could
possibly account for them by extending it with a sigmoid
transformation on � in Equation 2.

Another limitation of our study is that we did not address
possible effects of response noise. Subjects in the experiment by
Rademaker et al. (2012) provided their stimulus estimates by
rotating a test grating through button presses, which will likely
have involved some degree of response noise. However, the fits of
our model seem to leave little room for improvement (Figures 3
and S2–S7), which suggests that effects of response noise must
have been negligible. An interesting question that the current study
cannot answer is whether response noise is taken into account in
confidence judgments when this noise is substantial, that is,
whether confidence judgments reflect the precision of the memory
or the precision of the response. To test this, a more suitable
experiment would be one in which the level of response noise is
manipulated experimentally (e.g., through the sensitivity of the
response buttons) and confidence is rated after the stimulus esti-
mate is given.

A final limitation of our study is that we could not evaluate
the postulated Fechner law between VWM precision and VWM
confidence directly, because precision is an internal variable,
inaccessible to the experimenter. Instead, we evaluated it indi-
rectly, by fitting joint distributions of VWM confidence ratings
and VWM errors. A weakness of this approach—which we
think cannot be avoided—is that the evidence that it presents
for Fechner’s law in metacognition depends on how one defines
VWM precision. As in our previous work (Keshvari et al., 2012,
2013; van den Berg et al., 2014, 2012), we defined it here as
Fisher information. However, had we defined precision differ-
ently, we might have found a different mapping between VWM
precision and confidence. While this concern was partly alle-
viated by our finding that the Fechnerian mapping also success-
fully accounts for the data when defining precision as the
concentration parameter of the noise distribution or when de-
riving confidence from the probability that the response was
correct, there may be other, just as defensible definitions of

Table 4
Maximum-Likelihood Parameter Estimates of the Model Fits to
the Word Recognition Memory Task

Subject �target �target a b �mc

S1 0.93 0.79 1.09 7.59 2.99
S2 1.06 3.22 1.14 6.33 1.14
S3 1.31 1.04 3.32 5.26 0.19
S4 2.53 2.20 2.12 2.54 1.60
S5 0.00 2.99 1.38 3.11 2.77
S6 1.35 0.89 2.16 6.79 2.21
S7 0.67 1.18 1.71 6.80 1.20
S8 1.60 1.93 0.00 5.79 1.61
S9 0.61 0.95 0.43 2.82 1.11

S10 0.99 1.04 3.48 5.10 1.74
S12 1.77 1.05 2.17 5.70 3.02
S13 0.00 1.44 0.89 5.26 2.23
S14 1.56 1.56 1.96 3.60 1.75
M � SEM 1.14 � .18 1.53 � .21 1.81 � .29 5.18 � .42 1.93 � .24
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VWM precision that account for the data using a nonlogarith-
mic mapping. Even so, the flexible version of our model,
Equation 4, would in such a case probably still be able to
account for the joint distribution of VWM errors and confi-
dence. Therefore, hesitations about labeling our model as
“Fechnerian” do not have to stand in the way of appreciating its
quantitative success in accounting for VWM metacognition.

References

Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on
the accuracy of a population code. Neural Computation, 11, 91–101.
http://dx.doi.org/10.1162/089976699300016827

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19, 716–723. http://dx.doi.org/10
.1109/TAC.1974.1100705

Audet, C., & Dennis, J. E., Jr. (2006). Mesh adaptive direct search
algorithms for constrained optimization. SIAM Journal on Optimization,
17, 188–217. http://dx.doi.org/10.1137/040603371

Bae, G. Y., Olkkonen, M., Allred, S. R., Wilson, C., & Flombaum, J. I.
(2014). Stimulus-specific variability in color working memory with
delayed estimation. Journal of Vision, 14, 7–23. http://dx.doi.org/10
.1167/14.4.7

Bays, P. M. (2014). Noise in neural populations accounts for errors in
working memory. Journal of Neuroscience, 34, 3632–3645. http://dx.doi
.org/10.1523/JNEUROSCI.3204-13.2014

Bays, P. M. (2016). A signature of neural coding at human perceptual
limits. bioRxiv. http://dx.doi.org/10.1101/051714

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working
memory resources in human vision. Science, 321, 851–854. http://dx
.doi.org/10.1126/science.1158023

Bona, S., Cattaneo, Z., Vecchi, T., Soto, D., & Silvanto, J. (2013). Meta-
cognition of visual short-term memory: Dissociation between objective
and subjective components of VSTM. Frontiers in Psychology, 4, 62.
http://dx.doi.org/10.3389/fpsyg.2013.00062

Bona, S., & Silvanto, J. (2014). Accuracy and confidence of visual short-
term memory do not go hand-in-hand: Behavioral and neural dissocia-
tions. PLoS One, 9(3), e90808. http://dx.doi.org/10.1371/journal.pone
.0090808

Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual
working memory: Ensemble statistics bias memory for individual items.
Psychological Science, 22, 384 –392. http://doi.org/10.1177/
0956797610397956

Brady, T. F., & Tenenbaum, J. B. (2010). Encoding higher-order structure
in visual working memory: A probabilistic model. In S. Ohlsson (Ed.),
32nd Annual Meeting of the Cognitive Science Society 2010 (pp. 411–
416). Wheat Ridge, CO: Cognitive Science Society.

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning. arXiv, 1012. 2599.
Retrieved from https://arxiv.org/abs/1012.2599

Cappiello, M., & Zhang, W. (2016). A dual-trace model for visual sensory
memory. Journal of Experimental Psychology: Human Perception and
Performance, 42, 1903–1922. http://dx.doi.org/10.1037/xhp0000274

Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal
correlations. Nature Neuroscience, 14, 811–819. http://dx.doi.org/10
.1038/nn.2842

Cover, T. M., & Thomas, J. A. (2005). Elements of information theory.
Hoboken, NJ: Wiley. http://doi.org/10.1002/047174882X

De Martino, B., Fleming, S. M., Garrett, N., & Dolan, R. J. (2013).
Confidence in value-based choice. Nature Neuroscience, 16, 105–110.
http://dx.doi.org/10.1038/nn.3279

Dyrholm, M., Kyllingsbæk, S., Espeseth, T., & Bundesen, C. (2011).
Generalizing parametric models by introducing trial-by-trial parameter

variability: The case of TVA. Journal of Mathematical Psychology, 55,
416–429. http://dx.doi.org/10.1016/j.jmp.2011.08.005

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous
system. Nature Reviews Neuroscience, 9, 292–303. http://dx.doi.org/10
.1038/nrn2258

Fechner, G. T. (1860). Elemente der Psychophysik [Elements of psycho-
physic]. Leipzig, Germany: Breitkopf und Härtel.

Fleming, S. M., & Dolan, R. J. (2010). Effects of loss aversion on
post-decision wagering: Implications for measures of awareness. Con-
sciousness and Cognition, 19, 352–363. http://dx.doi.org/10.1016/j
.concog.2009.11.002

Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive
ability. Philosophical Transactions of the Royal Society of London:
Series B. Biological Sciences, 367, 1338–1349. http://dx.doi.org/10
.1098/rstb.2011.0417

Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the
quality of visual working memory. Nature Communications, 3, 1229.
http://dx.doi.org/10.1038/ncomms2237

Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules:
Visual orientation perception reflects knowledge of environmental sta-
tistics. Nature Neuroscience, 14, 926–932. http://dx.doi.org/10.1038/nn
.2831

Glanzer, M., Hilford, A., & Maloney, L. T. (2009). Likelihood ratio
decisions in memory: Three implied regularities. Psychonomic Bul-
letin & Review, 16, 431– 455. http://dx.doi.org/10.3758/PBR.16.3
.431

Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie
decisions about sensory stimuli. Trends in Cognitive Sciences, 5, 10–16.
http://dx.doi.org/10.1016/S1364-6613(00)01567-9

Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain:
Decoding the relationship between sensory stimuli, decisions, and
reward. Neuron, 36, 299 –308. http://dx.doi.org/10.1016/S0896-
6273(02)00971-6

Goris, R. L. T., Movshon, J. A., & Simoncelli, E. P. (2014). Partitioning
neuronal variability. Nature Neuroscience, 17, 858–865. http://dx.doi
.org/10.1038/nn.3711

Harlow, I. M., & Donaldson, D. I. (2013). Source accuracy data reveal the
thresholded nature of human episodic memory. Psychonomic Bulletin &
Review, 20, 318–325. http://dx.doi.org/10.3758/s13423-012-0340-9

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual
working memory in early visual areas. Nature, 458, 632–635. http://dx
.doi.org/10.1038/nature07832

Jang, Y., Wallsten, T. S., & Huber, D. E. (2012). A stochastic detection and
retrieval model for the study of metacognition. Psychological Review,
119, 186–200. http://dx.doi.org/10.1037/a0025960

JASP Team. (2016). JASP (Version 0.8.0.0) [Computer program]. Avail-
able from https://jasp-stats.org/

Juslin, P., Nilsson, H., Winman, A., & Lindskog, M. (2011). Reducing
cognitive biases in probabilistic reasoning by the use of logarithm
formats. Cognition, 120, 248–267. http://dx.doi.org/10.1016/j.cognition
.2011.05.004

Keshvari, S., van den Berg, R., & Ma, W. J. (2012). Probabilistic
computation in human perception under variability in encoding pre-
cision. PLoS One, 7(6), e40216. http://dx.doi.org/10.1371/journal
.pone.0040216

Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an
item limit in change detection. PLoS Computational Biology, 9(2),
e1002927. http://dx.doi.org/10.1371/journal.pcbi.1002927

Kiani, R., Corthell, L., & Shadlen, M. N. (2014). Choice certainty is
informed by both evidence and decision time. Neuron, 84, 1329–1342.
http://dx.doi.org/10.1016/j.neuron.2014.12.015

Kiani, R., & Shadlen, M. N. (2009). Representation of confidence associ-
ated with a decision by neurons in the parietal cortex. Science, 324,
759–764. http://dx.doi.org/10.1126/science.1169405

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

213FECHNER’S LAW IN METACOGNITION

http://dx.doi.org/10.1162/089976699300016827
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1137/040603371
http://dx.doi.org/10.1167/14.4.7
http://dx.doi.org/10.1167/14.4.7
http://dx.doi.org/10.1523/JNEUROSCI.3204-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.3204-13.2014
http://dx.doi.org/10.1101/051714
http://dx.doi.org/10.1126/science.1158023
http://dx.doi.org/10.1126/science.1158023
http://dx.doi.org/10.3389/fpsyg.2013.00062
http://dx.doi.org/10.1371/journal.pone.0090808
http://dx.doi.org/10.1371/journal.pone.0090808
http://doi.org/10.1177/0956797610397956
http://doi.org/10.1177/0956797610397956
https://arxiv.org/abs/1012.2599
http://dx.doi.org/10.1037/xhp0000274
http://dx.doi.org/10.1038/nn.2842
http://dx.doi.org/10.1038/nn.2842
http://doi.org/10.1002/047174882X
http://dx.doi.org/10.1038/nn.3279
http://dx.doi.org/10.1016/j.jmp.2011.08.005
http://dx.doi.org/10.1038/nrn2258
http://dx.doi.org/10.1038/nrn2258
http://dx.doi.org/10.1016/j.concog.2009.11.002
http://dx.doi.org/10.1016/j.concog.2009.11.002
http://dx.doi.org/10.1098/rstb.2011.0417
http://dx.doi.org/10.1098/rstb.2011.0417
http://dx.doi.org/10.1038/ncomms2237
http://dx.doi.org/10.1038/nn.2831
http://dx.doi.org/10.1038/nn.2831
http://dx.doi.org/10.3758/PBR.16.3.431
http://dx.doi.org/10.3758/PBR.16.3.431
http://dx.doi.org/10.1016/S1364-6613%2800%2901567-9
http://dx.doi.org/10.1016/S0896-6273%2802%2900971-6
http://dx.doi.org/10.1016/S0896-6273%2802%2900971-6
http://dx.doi.org/10.1038/nn.3711
http://dx.doi.org/10.1038/nn.3711
http://dx.doi.org/10.3758/s13423-012-0340-9
http://dx.doi.org/10.1038/nature07832
http://dx.doi.org/10.1038/nature07832
http://dx.doi.org/10.1037/a0025960
https://jasp-stats.org/
http://dx.doi.org/10.1016/j.cognition.2011.05.004
http://dx.doi.org/10.1016/j.cognition.2011.05.004
http://dx.doi.org/10.1371/journal.pone.0040216
http://dx.doi.org/10.1371/journal.pone.0040216
http://dx.doi.org/10.1371/journal.pcbi.1002927
http://dx.doi.org/10.1016/j.neuron.2014.12.015
http://dx.doi.org/10.1126/science.1169405


Likert, R. (1932). A technique for the measurement of attitudes. Archives
of Psychology, 22, 55. Retrieved from http://psycnet.apa.org/psycinfo/
1933-01885-001

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory
for features and conjunctions. Nature, 390, 279–281. http://dx.doi.org/
10.1038/36846

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From
psychophysics and neurobiology to individual differences. Trends in
Cognitive Sciences, 17, 391–400. http://dx.doi.org/10.1016/j.tics.2013
.06.006

Ly, A., Marsman, M., Verhagen, A., Grasman, R., & Wagenmakers, E. J.
(2015). A tutorial on Fisher information. Journal of Mathematical Psy-
chology. Advance online publication.

Ma, W. J. (2010). Signal detection theory, uncertainty, and Poisson-like
population codes. Vision Research, 50, 2308–2319. http://dx.doi.org/10
.1016/j.visres.2010.08.035

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian
inference with probabilistic population codes. Nature Neuroscience, 9,
1432–1438. http://dx.doi.org/10.1038/nn1790

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of
working memory. Nature Neuroscience, 17, 347–356. http://dx.doi.org/
10.1038/nn.3655

Ma, W. J., & Jazayeri, M. (2014). Neural coding of uncertainty and
probability. Annual Review of Neuroscience, 37, 205–220. http://dx.doi
.org/10.1146/annurev-neuro-071013-014017

Maloney, L. T., & Dal Martello, M. F. (2006). Kin recognition and the
perceived facial similarity of children. Journal of Vision, 6, 1047–1056.
http://dx.doi.org/10.1167/6.10.4

Maniscalco, B., & Lau, H. (2012). A signal detection theoretic approach
for estimating metacognitive sensitivity from confidence ratings. Con-
sciousness and Cognition, 21, 422– 430. http://dx.doi.org/10.1016/j
.concog.2011.09.021

Marr, D. (1982). Vision: A computational investigation into the human
representation and processing of visual information. New York, NY:
Henry Holt.

Mickes, L., Wixted, J. T., & Wais, P. E. (2007). A direct test of the
unequal-variance signal detection model of recognition memory. Psy-
chonomic Bulletin & Review, 14, 858–865. http://dx.doi.org/10.3758/
BF03194112

Mueller, S. T., & Weidemann, C. T. (2008). Decision noise: An explana-
tion for observed violations of signal detection theory. Psychonomic
Bulletin & Review, 15, 465–494. http://dx.doi.org/10.3758/PBR.15.3
.465

Palmer, J. (1990). Attentional limits on the perception and memory of
visual information. Journal of Experimental Psychology: Human Per-
ception and Performance, 16, 332–350. http://dx.doi.org/10.1037/0096-
1523.16.2.332

Paradiso, M. A. (1988). A theory for the use of visual orientation
information which exploits the columnar structure of striate cortex.
Biological Cybernetics, 58, 35– 49. http://dx.doi.org/10.1007/
BF00363954

Pashler, H. (1988). Familiarity and visual change detection. Perception &
Psychophysics, 44, 369–378. http://dx.doi.org/10.3758/BF03210419

Peirce, C. S. (1986). Writings of Charles S. Peirce. In Christian W. Kloesel
(Ed.), A Chronological Edition (Vol. 3, pp. 1872–1878). Bloomington,
IN: Indiana University Press.

Peirce, C. S. (1878). Illustrations of the logic of science: The probability of
induction. Popular Science Monthly, 12, 705–718.

Persaud, N., McLeod, P., & Cowey, A. (2007). Post-decision wagering
objectively measures awareness. Nature Neuroscience, 10, 257–261.
http://dx.doi.org/10.1038/nn1840

Phillips, L. D., & Edwards, W. (1966). Conservatism in a simple proba-
bility inference task. Journal of Experimental Psychology, 72, 346–354.
http://dx.doi.org/10.1037/h0023653

Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and computation
with population codes. Annual Review of Neuroscience, 26, 381–410.
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131112

Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and cer-
tainty: Distinct probabilistic quantities for different goals. Nature Neu-
roscience, 19, 366–374. http://dx.doi.org/10.1038/nn.4240

Rademaker, R. L., Tredway, C. H., & Tong, F. (2012). Introspective
judgments predict the precision and likelihood of successful mainte-
nance of visual working memory. Journal of Vision, 12, 21. http://dx
.doi.org/10.1167/12.13.21

Ratcliff, R., Sheu, C. F., & Gronlund, S. D. (1992). Testing global memory
models using ROC curves. Psychological Review, 99, 518–535. http://
dx.doi.org/10.1037/0033-295X.99.3.518

Seth, A. K. (2008). Post-decision wagering measures metacognitive con-
tent, not sensory consciousness. Consciousness and Cognition, 17, 981–
983. http://dx.doi.org/10.1016/j.concog.2007.05.008

Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer
analysis of visual working memory. Psychological Review, 119, 807–
830. http://dx.doi.org/10.1037/a0029856

Stevens, S. S. (1957). On the psychophysical law. Psychological Review,
64, 153–181. http://dx.doi.org/10.1037/h0046162

Sun, J. Z., Wang, G. I., Goyal, V. K., & Varshney, L. R. (2012). A
framework for Bayesian optimality of psychophysical laws. Journal of
Mathematical Psychology, 56, 495–501. http://dx.doi.org/10.1016/j.jmp
.2012.08.002

Thurstone, L. L. (1927). A law of comparative judgment. Psychological
Review, 34, 273–286. http://dx.doi.org/10.1037/h0070288

van den Berg, R., Anandalingam, K., Zylberberg, A., Kiani, R., Shadlen,
M. N., & Wolpert, D. M. (2016, February). A common mechanism
underlies changes of mind about decisions and confidence. eLIFE, 5,
e12192. http://doi.org/10.7554/eLife.12192

van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of
working memory models. Psychological Review, 121, 124–149. http://
dx.doi.org/10.1037/a0035234

van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012).
Variability in encoding precision accounts for visual short-term memory
limitations. Proceedings of the National Academy of Sciences, USA, 109,
8780–8785. http://doi.org/10.1073/pnas.1117465109

Wilken, P., & Ma, W. J. (2004). A detection theory account of change
detection. Journal of Vision, 4, 1120–1135. http://dx.doi.org/10.1167/4
.12.11

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of
recognition memory. Psychological Review, 114, 152–176. http://dx.doi
.org/10.1037/0033-295X.114.1.152

Zhang, H., & Maloney, L. T. (2012, January). Ubiquitous log odds: A
common representation of probability and frequency distortion in per-
ception, action, and cognition. Frontiers in Neuroscience. Advance
online publication. http://dx.doi.org/10.3389/fnins.2012.00001

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations
in visual working memory. Nature, 453, 233–235. http://dx.doi.org/10
.1038/nature06860

Received January 24, 2016
Revision received November 29, 2016

Accepted November 30, 2016 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

214 VAN DEN BERG, YOO, AND MA

http://psycnet.apa.org/psycinfo/1933-01885-001
http://psycnet.apa.org/psycinfo/1933-01885-001
http://dx.doi.org/10.1038/36846
http://dx.doi.org/10.1038/36846
http://dx.doi.org/10.1016/j.tics.2013.06.006
http://dx.doi.org/10.1016/j.tics.2013.06.006
http://dx.doi.org/10.1016/j.visres.2010.08.035
http://dx.doi.org/10.1016/j.visres.2010.08.035
http://dx.doi.org/10.1038/nn1790
http://dx.doi.org/10.1038/nn.3655
http://dx.doi.org/10.1038/nn.3655
http://dx.doi.org/10.1146/annurev-neuro-071013-014017
http://dx.doi.org/10.1146/annurev-neuro-071013-014017
http://dx.doi.org/10.1167/6.10.4
http://dx.doi.org/10.1016/j.concog.2011.09.021
http://dx.doi.org/10.1016/j.concog.2011.09.021
http://dx.doi.org/10.3758/BF03194112
http://dx.doi.org/10.3758/BF03194112
http://dx.doi.org/10.3758/PBR.15.3.465
http://dx.doi.org/10.3758/PBR.15.3.465
http://dx.doi.org/10.1037/0096-1523.16.2.332
http://dx.doi.org/10.1037/0096-1523.16.2.332
http://dx.doi.org/10.1007/BF00363954
http://dx.doi.org/10.1007/BF00363954
http://dx.doi.org/10.3758/BF03210419
http://dx.doi.org/10.1038/nn1840
http://dx.doi.org/10.1037/h0023653
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131112
http://dx.doi.org/10.1038/nn.4240
http://dx.doi.org/10.1167/12.13.21
http://dx.doi.org/10.1167/12.13.21
http://dx.doi.org/10.1037/0033-295X.99.3.518
http://dx.doi.org/10.1037/0033-295X.99.3.518
http://dx.doi.org/10.1016/j.concog.2007.05.008
http://dx.doi.org/10.1037/a0029856
http://dx.doi.org/10.1037/h0046162
http://dx.doi.org/10.1016/j.jmp.2012.08.002
http://dx.doi.org/10.1016/j.jmp.2012.08.002
http://dx.doi.org/10.1037/h0070288
http://doi.org/10.7554/eLife.12192
http://dx.doi.org/10.1037/a0035234
http://dx.doi.org/10.1037/a0035234
http://doi.org/10.1073/pnas.1117465109
http://dx.doi.org/10.1167/4.12.11
http://dx.doi.org/10.1167/4.12.11
http://dx.doi.org/10.1037/0033-295X.114.1.152
http://dx.doi.org/10.1037/0033-295X.114.1.152
http://dx.doi.org/10.3389/fnins.2012.00001
http://dx.doi.org/10.1038/nature06860
http://dx.doi.org/10.1038/nature06860

	Fechner’s Law in Metacognition: A Quantitative Model of Visual Working Memory Confidence
	Model Construction
	VWM Noise and Precision
	Distribution of VWM Errors for a Given Level of Precision
	Fechner Model of VWM Confidence
	Joint Distribution of VWM Errors and Confidence Ratings
	VWM Encoding Model

	Model Evaluation
	Data
	Model Fits
	Evaluation of Parameter Estimates
	Evaluation of the Assumption That the Mapping Between Precision and Confidence Is Logarithmic
	Evaluation of the Assumption That Confidence Ratings Are Corrupted by Additive Metacognitive Noise
	Evaluation of the Assumption That the Mapping Between VWM Precision and VWM Confidence Is Indepe ...
	Evaluation of the Model Using an Alternative Definition of VWM Precision
	Evaluation of the Model Using Probability Correct as a Basis for Confidence

	Neural Implementation
	A Neural Model for VWM Errors
	Neural Representation of Memory Precision
	Model Fits

	A Reevaluation of VWM Encoding Models
	Factorial Model Design
	First factor: maximum number of remembered items
	Second factor: quantization of memory precision
	Third factor: variability in precision

	Factorial Model Comparison Results

	Generalization to a Word Recognition Memory Task
	Experiment
	Model
	Model Fit

	Discussion
	Generality of Fechner’s Law
	Metacognitive Noise
	The Nature of VWM Precision
	Sources of Variability in Precision
	Limitations and Future Work

	References


